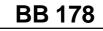
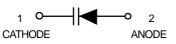


VHF variable capacitance diode

FEATURES


- · Excellent linearity
- · Excellent matching to 2% DMA
- · Ultra small plastic SMD package
- · C 28: 2.6 pF; ratio: 15
- · Very low series resistance.

APPLICATIONS


- \cdot Electronic tuning in VHF television
- tuners, band B up to 460 MHz
- · Voltage controlled oscillators(VCO).

The BB178 is a planar technology variable capacitance diode, in a SOD523 (SC-79) package. The excellent matching performance is achieved by gliding matching and a direct matching assembly procedure.

LIMITING VALUES In accordance with the Absolute Maximum Rating System (IEC 134).

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	UNIT
V _R	continuous reverse voltage		_	32	V
V _{RM}	peak reverse voltage	in series with a 10 k Ω resistor	_	35	V
I _F	continuous forward current		_	20	mA
T stg	storage temperature		-55	+150	°C
Tj	operating junction temperature		-55	+125	°C

ELECTRICAL CHARACTERISTICS $T_j = 25^{\circ}C$ unless otherwise specified.

SYMBOL	PARAMETER	CONDITIONS	MIN.	MAX.	TYP.	UNIT
I _R	reverse current	V $_{R}$ = 30 V; see Fig.2	-	-	10	nA
		V $_{R}$ = 30 V; T $_{j}$ =85°C; see Fig.2	-	-	200	nA
r _s	diode series resistance	f = 100 MHz; V _R is the value at which Cd =30 pF	-	0.65	0.8	Ω
C d	diode capacitance	V $_R$ = 1 V; f = 1 MHz; see Figs 1and 3	34.65	-	42.35	pF
		V $_{R}$ = 28 V; f = 1 MHz; see Figs 1and 3	2.361	-	2.754	pF
$\frac{C_{d(1V)}}{C_{d(2V)}}$	capacitance ratio	f = 1 MHz	-	1.3	_	
C d(1V) C d(28V)	capacitance ratio	f = 1 MHz	13.5	-	_	
C d(25V)	capacitance ratio	f = 1 MHz	-	1.08	_	
$\frac{\Delta C_{d}}{C_{d}}$	capacitance matching	V _R = 1 to 28 V; in a sequence of 15 diodes(gliding)	-	-	2	%

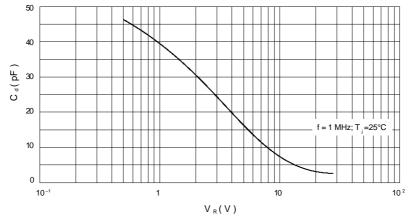
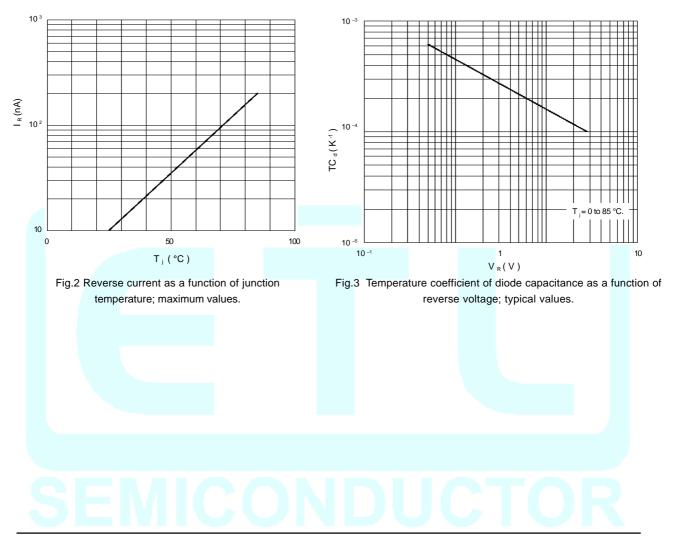



Fig.1 Diode capacitance as a function of reverse voltage; typical values.

