
Silicon Epicap Diode

Designed for general frequency control and tuning applications; providing solid–state reliability in replacement of mechanical tuning methods.

- High Q with Guaranteed Minimum Values at VHF Frequencies
- · Controlled and Uniform Tuning Ratio
- Available in Surface Mount Package

MMBV109LT1 MBV109T1 MV209

MAXIMUM RATINGS(EACH DIODE)

Rating	Symbol	Value			Unit
		MBV109T1	MMBV109LT1	MV209	
Reverse Voltage	V _R		30		Vdc
Forward Current	l _F		200		mAdc
Device Dissipation	P _D				
@T _A = 25°C		280	200	200	mW
Derate above 25°C		2.8	2.0	1.6	mW/°C
Junction Temperature	Τ _J		+125		°C
Storage Temperature Range	T _{stg}		-55 to +150		°C

DEVICEMARKING

MBV109T1= J4A, MMBV109LT1 =M4A, MV209 = MV209

ELECTRICAL CHARACTERISTICS(T_A=25°C unless otherwise noted)

Characteristic	Symbol	Min	Тур	Max	Unit
Reverse Breakdown Voltage	V _{(BR)R}	30	_	_	Vdc
(I _R = 10mAdc)	(BR)IX				
Reverse Voltage Leakage Current	I _R	_	_	0.1	mAdc
(V _R = 25Vdc)	- K				
Diode Capacitance Temperature Coefficient	TC		300		nnm/°C
(V _R = 3.0 Vdc, f = 1.0 MHz)	TC _c	_	300	_	ppm/°C

			C _T Diode Capacitance V _R =3.0Vdc, f=1.0MHz pF		Q, Figure of Merit V _R = 3.0Vdc f = 50MHz	C _{R,} Capacitance Ratio C ₃ / C ₂₅ f=1.0MHz (Note 1)		
	Devi	ісе Туре	Min	Nom	Max	Min	Min	Max
MBV1	09T1, MI	MBV109LT1, MV209	26	29	32	200	5.0	6.5

^{1.} C $_{\rm R}$ is the ratio of C $_{\rm t}$ measured at 3 V dc divided by C $_{\rm t}$ measured at 25 Vdc.

MMBV109LT1 is also available in bulk packaging. Use MMBV109L as the device title to order this device in bulk.

MBV109T1 MMBV109LT1 MV209

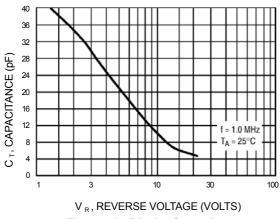


Figure 1. Diode Capacitance

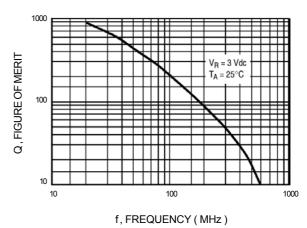


Figure 2. Figure of Merit

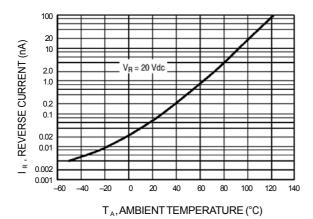


Figure 3 . Leakage Current

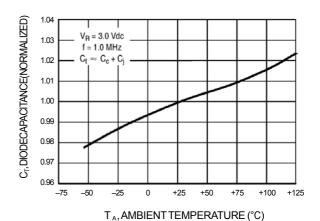


Figure 4. Diode Capacitance

NOTES ON TESTING AND SPECIFICATIONS

1. C $_{\rm R}$ is the ratio of C $_{\rm t}$ measured at 3.0 Vdc divided by C $_{\rm t}$ measured at 25 Vdc.

